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Regular wave impact onto an elastic plate
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Abstract. A computational analysis of an elastic plate dropped against regular long waves is presented. The prob-
lem is considered within the linear potential-flow theory. The liquid flow is two-dimensional and the plate is mod-
elled by an Euler beam. The analysis is based on the normal-mode method with hydroelastic behavior of the plate
being of main interest. Different impact conditions are considered to study the dependence of the total energy
of the plate–liquid system on impact geometry and plate properties. The contributions of kinetic and potential
energies to the total energy are analyzed. It is shown that the kinetic part of the system energy is small at the
instant of time when bending stresses in the beam approach their maximum values. Estimations of both the total
energy and the maximum of bending stresses are presented. Most of the calculations are performed for the con-
ditions of experiments carried out in MARINTEK. A range of the problem parameters is also considered, to
reveal peculiarities of the unsteady interaction between a falling elastic plate and surface waves.
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1. Introduction

The plane unsteady problem of an elastic plate falling down onto a liquid free surface covered
with regular long waves is considered. Initially (t ′ =0), the plate touches the wave profile and
starts moving downwards thereafter with a constant velocity V (see Figure 1). The position
of the left edge of the plate at the initial moment is taken as the origin of the Cartesian coor-
dinate system x′Oy′ (dimensional variables are denoted by a prime). The waves are assumed
linear. The wave shape before impact is described by the equation

y′ =a[cos(ν[x′ −x′
1]−ωt ′)−1], (1)

where a is the wave amplitude, ω is the wave frequency, ν is the wavenumber, ω2 = gν for
deep water, x′

1 is the distance of the impact point from the left edge of the plate, g is the
gravity acceleration, and TW = 2π/ω is the wave period. The wave is assumed long, that is
aν� 1. The plate length 2L and the wave length λ= 2π/ν are of the same order, hence we
have also a/L� 1. The impact velocity is assumed to be much less than the sound velocity
in a liquid at rest, c0. Initially the plate is horizontal and undeformed. It corresponds to the
interval y′ =0, 0<x′<2L.

The shape of the plate is changed owing to its interaction with the liquid. The plate is dry
at the initial moment, t ′ =0, and only partially wetted in the first stage of the process, which
is referred to as the impact stage. During the second stage (penetration stage), the plate is
totally wetted and continues to interact with the liquid. The presence of the contact points
between the free surface and the elastic plate during the impact stage is the main feature of
the problem. The positions of these points are unknown in advance and must be determined
together with the liquid flow and the plate deflections. We shall determine the plate deflection
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Figure 1. Elastic plate and the free surface at the time
of impact.

Figure 2. Central impact.

and bending stresses in the plate, estimate the maximum stresses and analyze their dependence
on impact conditions, initial shape of the liquid free surface and properties of the plate.

The analysis is based on the following assumptions: (A1) the liquid is ideal and incom-
pressible; (A2) the liquid flow is two-dimensional and potential; (A3) the plate deflection is
governed by the Euler beam equation; (A4) the beam edges are simply supported; (A5) the
influence of the air, as well as both external mass forces and surface tension, are negligibly
small; (A6) the wave length is comparable to the beam length; (A7) the wave amplitude is
much smaller than the beam length; (A8) the duration of the impact stage Ti is much smaller
than the greatest period of free vibrations of the plate on the liquid surface T1 and much
greater than the time scale L/c0 of the acoustic effects; (A9) the elastic plate is the bot-
tom of a rigid structure which penetrates the liquid with a constant velocity V ; (A10) during
the impact stage the contact points move monotonically with time; (A11) the ratio V T1/L is
much less than unity.

Motivations for the present research come from ship hydrodynamics, where wave impact
onto the wetdeck of a catamaran can be very severe and may lead to local damage of the
wetdeck. This problem has been intensively studied experimentally during the last ten years
[1,2], numerically [2–6] and theoretically [2,7]. The study carried out by Norwegian research-
ers is based exclusively on the experiments by Aarsners [1]. Attempts to generalize the derived
predictions to other experiments (see, for example, [8,9]) were not done (see [2]). It should
be noted that other experiments have not been subjected to such intensive theoretical analy-
sis as the Norwegian ones. A preliminary theoretical analysis of the experiments by Zhu and
Faulkner [9] was given by Korobkin [10] with three-dimensional effects taken into account.
The present study is based only on the Norwegian experiments. In addition to the theoretical
analysis already carried out by Faltinsen and his group: we
(1) use a modified method of normal modes. After the proposed modifications: calculations

of the hydrodynamic loads are not required; the matrix of hydrodynamics coefficients
is evaluated analytically; the positions of the contact points are governed by ordinary
differential equations, which are incorporated into the system for the principal coordi-
nates of the normal modes; there are no obstacles to start numerical simulations from
the initial moment, at which the size of the wetted area is zero; there is no need to intro-
duce the acoustic stage to describe formation of the contact region from a single point;

(2) focus on global characteristics of the interaction, which make it possible to explain
energy redistribution during the impact and to estimate maximum stress amplitude;

(3) consider a range of the problem parameters to reveal peculiarities of the interaction. This
may be helpful to design future experiments on elastic-plate impact.
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It is worth noting that assumptions (A8) and (A11) in this paper provide some limita-
tions. The greatest period of free vibrations of the plate placed in an unbounded liquid, T1,

is of the order O([ρL5/EJ ]1/2), where ρ is the liquid density, E is the elasticity modulus, J
is the inertia momentum of the beam cross-section, J =h3/12 for a beam of constant thick-
ness h [2]. For a plate of length 2L, which is comparable with the wavelength λ, the duration
of the impact stage Ti is of the order O(a/V ). In order to consider also the case of very
long regular waves with 2L� λ, the radius of the curvature at the wave crest, R, is intro-
duced, where R= (aν2)−1. The wave profile can be approximated by the parabolic contour
y′ =−(x′ −x′

1)
2/(2R) close to the impact point. Neglecting both the free-surface deformation

and the plate deflection during the impact stage, we can estimate the order of the impact stage
duration as L2/(RV ). This quantity is of the same order as a/V , where L/λ=O(1), and of
higher order, where L/λ�1. Assumption (A8) provides the inequalities

L

c0
� L2

RV
�
√
ρL5

EJ
,

which lead to the following limitations for the impact velocity

[EJ/ρL]1/2 �VR� c0L. (2)

Experiments [5] were performed under the following conditions: L = 0·25 m, E = 21 ×
1010N/m2, ρ = 103 kg/m3, h= 0·008 m, c0 = 1500 m/s. We obtain (EJ/ρL)1/2 ≈ 6 m2/s and
c0L≈ 375 m2/s. If the product VR approaches the lower bound in (2), the quantities Ti and
T1 are comparable to each other. If the product approaches the upper bound, c0L, acoustic
effects must be taken into account during the impact stage [11]. Assumption (A8) is essential
for theoretical analysis because it makes possible to separate the impact stage, during which
large impact forces occur, and the penetration stage, at which the bending stresses approach
their maximum values, and also to disregard the acoustic stage of the impact [2].

Assumption (A11) gives V � 24 m/s. This inequality guarantees that the bending stresses
take their maximum values sufficiently before the penetration depth of the plate becomes
comparable to the length scale L of the problem. Assumptions (A7) and (A11) indicate that,
as a first approximation, we can put the boundary conditions on the line y′ =0 and to line-
arize them and the equations of motion. The ratio L/R, which is small, can be taken as the
parameter of linearization.

At the leading order the liquid flow before the impact can be neglected compared to the
flow caused by the impact for t ′/T1 =O(1) if and only if Tw � T1. We obtain T1 ≈ 0·01 s,
which is much smaller than the period 0·7–5·0 s of regular waves used in the experiments
[2]. Therefore, within the experimental conditions, wave motion can be neglected and the liq-
uid can be considered as being at rest at the impact instant with its free surface described by
Equation (1), where t ′ =0.

It should be noted that, even after all possible simplifications, the problem is coupled
(hydrodynamic loads are dependent on the beam deflection and vice versa) and nonlinear at
the impact stage (the dimension of the contact region is unknown in advance and has to be
determined together with the liquid flow and the beam deflection). At the penetration stage
the problem is linear and its solution can be readily found if the beam deflection and veloc-
ities of beam elements are given at the beginning of this stage. Those values are determined
by the nonlinear solution of the problem at the impact stage.

Both the impact stage and the penetration stage of the plate–liquid interaction are analy-
sed for the three main cases: (i) central impact (Figure 2); (ii) edge impact (Figure 3); (iii)
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Figure 3. Edge impact. Figure 4. Impact with attached cavity.

impact with a cavity formation (Figure 4), with the help of the normal-mode method [3].
After the modifications [12] this method leads to an infinite system of ordinary differential
equations with respect to the principal coordinates of the beam deflection and dimensions of
the contact region. Computer programs developed for the three distinguished cases are com-
bined to describe plate impact under arbitrary impact conditions.

Numerical simulations are performed to determine details of the plate/liquid interaction
during both the impact stage and the penetration stage, the kinetic energy of the plate, its
potential energy and the kinetic energy of the liquid flow. It was found that, in spite of the
short duration of the impact stage, the peculiarities of the initial shape of the free surface and
the impact conditions are of great importance, the hydrodynamic loads are very high and are
dependent on the velocity of the contact-region expansion [13]. In the case of edge impact
it was revealed that, within the framework of the incompressible liquid model, the velocity
of the contact-region expansion and, therefore, the hydrodynamic loads on the beam, can be
beyond all bounds owing to the flexibility of the beam. This phenomenon is of a geometri-
cal nature and occurs when the angle between the beam and the liquid free surface close to
the periphery of the contact region tends to zero. In naval hydrodynamics this phenomenon
is known as bow-flare slamming. In the case of impact with cavity formation, the loads are
unbounded for any parameters of the beam and waves. This is due to the fact that the angle
between the free surface and the plate at the contact points is very small at the moment the
cavity collapses. In this case the contact region consists of two parts which are separated by
a cavity. In this study the presence of air in the cavity is not taken into account.

The mathematical formulation of the problem and a general description of the present
approach are given in Section 2. Modifications of the normal-mode method are presented in
Section 3 for the simplest case of central impact. In Section 4 the method is applied to the
problem of edge impact, which is a part of the original problem. Peculiarities of the impact
stage are discussed and comparisons of the beam behaviors at the end of the impact stage
for both central impact and edge impact are presented. Elastic-plate impact with a cavity for-
mation is analyzed in Section 5. Vibration of the plate during the penetration stage is stud-
ied in Section 6 with a focus on a comparison between the theoretical predictions and the
experimental results. One of the features of the theoretical prediction for maximum bending-
stress evolution is the overestimation of higher-mode contributions. Generation of high-fre-
quency components of the bending stresses is investigated in Section 7. Global characteristics
of the plate impact and their evolutions in time are studied in Section 8. The energy-conser-
vation law and the results of numerical simulations of the impact are used in Section 9 to
derive estimates of maximum bending-stress amplitude. The main results of the present study
are outlined in Section 10.
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2. Formulation of the problem

The plane problem of elastic-beam impact onto the slightly curved free surface of an ideal
incompressible liquid is considered in non-dimensional variables. The scales of the indepen-
dent variables are chosen the same as in the rigid-body impact problem. They are: L is the
length scale, L2/(RV ) is the time scale, V is the velocity scale, ρV 2R/L is the pressure scale,
Eh/R is the bending-stress scale. In numerical analysis we use scales that characterize the
impact stage. Generally speaking, we need to introduce other scales [2] to describe the process
during the penetration stage. In particular, it is reasonable to take T1 as the time scale of the
penetration stage and the product V T1 as the displacement scale. However, the description of
the penetration stage is much simpler than that of the impact stage. That is why we do not
expect any difficulties with its numerical study, even if the choice of scales for the penetra-
tion stage are not optimal. More details about the orders of the unknown quantities during
the penetration stage can be found in [2] and [14].

Within the framework of the linearized impact theory, which is referred to as the Wag-
ner theory [15], the flow domain coincides with the lower half-plane y <0. The liquid flow is
governed by the Laplace equation for the velocity potential ϕ(x, y, t), and the plate deforma-
tion by the Euler beam equation for the plate deflection w(x, t). The conditions on the liquid
boundary are linearized and imposed on the line y=0. A part of the boundary x∈D(t), y=0
corresponds to the contact region of the elastic beam with the liquid, and the part x �∈D(t),
y=0 corresponds to the free surface where the pressure is zero at all times. Despite the fact
that both the equations of motion and the boundary conditions are linearized, the problem is
still nonlinear because the contact region D(t) is unknown in advance. The coupled problem
has the form

α
∂2w

∂t2
+β ∂

4w

∂x4
=p(x,0, t) (0<x<2, t>0), (3)

w=wxx =0 (x=0, x=2, t ≥0), (4)

w=wt =0 (0<x<2, t=0), (5)

p=−ϕt (y≤0), (6)

ϕxx +ϕyy =0 (y <0), (7)

ϕ=0 (y=0, x �∈D), (8)

ϕy =−1+wt(x, t) (y=0, x ∈D), (9)

ϕ→0 (x2 +y2 →∞). (10)

Here p(x, y, t) is the hydrodynamic pressure, D(t)⊂ [0,2], α=MB/(ρL), β =EJ/(ρLR2V 2),

MB is the beam mass per unit length. In dimensionless variables the bending-stress dis-
tribution on the upper side of the beam σ(x, t) is given as σ(x, t)= wxx(x, t)/2. In non-
dimensional variables the shape of the plate with respect to the initial position of the liquid
free surface is described by the equation y= (L/R)yb(x, t),

yb(x, t)= 1− cos[η(x−x1)]
η2

− t+w(x, t), (11)
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Figure 5. Three phases of the impact stage.

where η= 2π(L/λ) and L/R is the parameter of linearization. In particular, for very long
waves, η→0, and close to the impact region, |x−x1|=O(1), Equation (11) leads to the par-
abolic approximation of the wave profile

yb(x, t)≈ 1
2
(x−x1)

2 − t+w(x, t).

This approximation was used in [12] and [16].
Initially (t = 0), the beam touches the liquid free surface at a single point x1, where

0≤x1 ≤1 (Figure 5). Central impact corresponds to x1 =1, and edge impact to x1 =0. In the
general case (0<x1 < 1) the dimension of the contact region, which appears at the impact
moment, is described by two functions c1(t) and c2(t), where dc1/dt < 0 and dc2/dt > 0
according to assumption (A10) and c1(0)= c2(0)= x1. During the first part, 0< t < t1, of
the impact stage we obtain D(t)= {x | c1(t)< x < c2(t)}, where c1(t1)= 0. During the second
part, t1 < t < t2, the dimension of the contact region is described by the function c2(t) and
D(t)={x |0<x<c2(t)}. It should be noted that, for simplicity, both the deformations of the
liquid free surface and the beam deflection are not shown in Figure 5. Wetted parts of the
plate are shown with thick lines and the dry parts with thin lines.

It is possible that the right edge of the beam touches the disturbed liquid free surface
well before the plate is totally wetted. If so, a cavity is formed close to this edge. The cavity
collapses thereafter if no air is entrapped. Two reasons may be responsible for this scenario.
They are: (1) special shape of the initial free surface (see Figure 4); (2) elastic deflection of
the beam (blockage phenomenon). In any case, the second part of the contact region may
appear, the dimension of which is described by the function c3(t) (Figure 5). In this case
D(t)={x |0<x<c2(t), c3(t)<x<2}. This part of the impact stage, t2<t <t3, is referred to as
the third phase. This phase is over at the instant t3, when the cavity collapses, c2(t3)= c3(t3).

The penetration stage starts at t = t3. During this stage the problem is linear but cou-
pled. It should be noted that, for given impact conditions, some phases may be absent. For
example, in the central-impact problem studied in Section 3, there is only the first phase with
c1(t)=2− c2(t).

The initial conditions for the first phase are given by (5) and for both the following phases
and for the penetration stage it is required that the beam deflection w(x, t) and its first deriv-
ative in time wt(x, t) change continuously at t= tj , j =1,2,3,

w(x, tj +0)=w(x, tj −0), wt (x, tj +0)=wt(x, tj −0). (12)

The formulation of the problem will be completed once equations for the functions
c1(t), c2(t) and c3(t) have been obtained. Those equations follow from the condition that the
displacements of the liquid particles are finite at the contact points: x=c1(t) and x=c2(t) for
0<t <t1, at x=c2(t) for t1<t <t2, and at x=c2(t) and x=c3(t) for t2<t <t3. The equations
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are derived for each phase separately. They are equivalent to the well-known Wagner condi-
tions [13]. Wagner conditions in their traditional forms lead to systems of singular, nonlinear
integral equations [2], which are not easy to solve numerically, even for undeformable bod-
ies. This is why modified Wagner conditions are used here [13]. Modified Wagner conditions
are transformed to nonlinear ordinary differential equations, which are incorporated into the
system for principal coordinates of the beam deflection.

3. Central impact

The problem, where initially the wave crest touches the plate centre, is the simplest one. In
this case it is convenient to take the middle point of the plate as the origin of the Cartesian
coordinate system xOy (in this section only). The initial shape of the free surface is symmetri-
cal with respect to the Oy-axis, which indicates that the flow is also symmetrical with respect
to the new coordinate system (Figure 2). The central-impact problem has the same features
as the problem for the first part of the impact stage but it is more suitable to demonstrate
the main peculiarities of both the method of analysis and the numerical algorithm.

The contact-region dimension is described by a function c(t), where the interval y = 0,
−c(t) < x < c(t) corresponds to the wetted part of the plate. In the new coordinate system
Equation (11) is replaced by

yb(x, t)=η−2(1− cos(ηx))− t+w(x, t), (13)

where w(−x, t)=w(x, t). For the symmetrical case the Wagner condition leads to the equa-
tion [13]∫ π/2

0
yb[c(t) sin θ, t ] dθ =0. (14)

Substitution of (13) in (14) gives

t= 1−J0(ηc)

η2
+ 2
π

∫ π/2

0
w[c sin θ, t ] dθ. (15)

It is convenient to introduce a new unknown function d(x, t) = αwt(x, t) + ϕ(x,0, t),
−1<x<1, which makes it possible to rewrite the beam Equation (3) with account for (6) in
the form

dt +βwxxxx =0, (16)

αwt +ϕ(x,0, t)=d(x, t). (17)

The boundary-value problem (16), (17), (4), (5), (7–10), (15) is solved with the help of the
normal-mode method. This method leads to an infinite system of ordinary differential equa-
tions with respect to principal coordinates of the beam deflection w(x, t), −1<x<1. Within
the framework of the normal-mode method, the beam deflection w(x, t) and the function
d(x, t) are sought in the forms

w(x, t)=
∞∑
n=1

an(t)ψn(x), (18)

d(x, t)=β
∞∑
n=1

λ4
ndn(t)ψn(x). (19)
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Here ψn(x) are the non-trivial solutions of the homogeneous boundary-value problem

d4ψn

dx4
=λ4

nψn (−1<x<1), ψn= d2ψn

dx2
=0 (x=±1), (20)

and λn are the corresponding eigenvalues. Moreover, the eigenfunctions ψn(x) satisfy the
orthogonality condition∫ 1

−1
ψn(x)ψm(x)dx= δnm, (21)

where δnm = 0 for n �=m and δnn = 1. In the case of a simply supported beam and central
impact, the eigenfunctions ψn(x) are given as (n≥1)

ψn(x)= cos(λnx), λn=π(n−1/2). (22)

It is convenient to take the principal coordinates an(t) of the beam deflection as the new
unknown functions and to express other quantities with their help.

On the interval of the liquid boundary, y = 0,−1 < x < 1, which contains the contact
region, −c(t)<x <c(t), c(t)≤1, the velocity potential can be presented as

ϕ(x,0, t)=
∞∑
n=1

bn(t)ψn(x), (23)

bn(t)=
∫ c(t)

−c(t)
ϕ(x,0, t)ψn(x)dx.

This follows from Equations (17–19) and (8). In order to find the dependencies of the coeffi-
cients bm(t) on the principal coordinates an(t), where m,n≥1, we must consider the hydrody-
namic part (7–10) of the original problem. We introduce the harmonic in the lower half-plane
functions ϕn(x, y, c), which satisfy equations

∂2ϕn

∂x2
+ ∂2ϕn

∂y2
=0 (y <0),

ϕn=0 (y=0, |x|>c(t)),
∂ϕn

∂y
=ψn(x) (y=0, |x|<c(t)),

ϕn→0 (x2 +y2 →∞).

Here n=0,1,2, . . . and ψ0(x)≡1. We obtain

ϕ(x,0, t)=−
√
c2 −x2 +

∞∑
n=1

ȧn(t)ϕn(x,0, c),

bm(t)=−fm(c)+
∞∑
n=1

ȧn(t)Snm(c), (24)

fm(c)=
∫ c

−c

√
c2 −x2ψm(x)dx, Snm(c)=

∫ c

−c
ϕn(x,0, c)ψm(x)dx,

where a dot stands for the time derivatives. Green’s second identity gives that the matrix S

with the elements Snm(c), where m,n=1,2, . . . , is symmetrical. Taking (22) into account, we
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find [12]

fm(c)=πc2J1(λmc)/(λmc), Snn(c)= π

2
c2
[
J 2

0 (λnc)+J 2
1 (λnc)

]
,

Snm(c)= πc

λ2
n−λ2

m

[λnJ0(λmc)J1(λnc)−λmJ0(λnc)J1(λmc)] (n �=m),

where J0(z) and J1(z) are the zero- and first-order Bessel functions.
Substituting (18), (19), (23) and (24) in (16), (17) and taking into account the orthogo-

nality condition (21), we arrive at an infinite system of ordinary differential equations with
respect to the principal coordinates

d�a
dt

= (αI +S)−1(βD �d+ �f ), (25)

d �d
dt

=−�a. (26)

Here �a = (a1, a2, a3, ...)
T , �d = (d1, d2, d3, . . . )

T , �f = (f1(c), f2(c), f3(c), . . . )
T , I is the unit

matrix and D is the diagonal matrix, D=diag{λ4
1, λ

4
2, λ

4
3, . . . }. The right-hand sides of system

(25) and (26) depend on �a, �d and c, but not on the time t , which is why it is convenient to
take the quantity c as a new independent variable (0 ≤ c≤ 1) instead of time t . Time t is a
function of c now, t= t (c). This substitution is justified under the condition dc/dt >0, which
follows from assumption (A10). A differential equation for the unknown function t (c) can be
obtained from Equation (15) after its differentiation with respect to c:

dt
dc

=Q(c, �a, �̇a), (27)

Q(c, �a, �̇a)= η−1J1(ηc)+ (2/π)(�a, ��c(c))
1− (2/π)(�̇a, ��(c)) ,

�n(c)=
∫ π/2

0
ψn(c sin θ)dθ, ��c(c)=d��/dc.

For a simply supported beam, we obtain �n(c)= (π/2)J0(λnc) and (�c)n=−(πλn/2)J1(λnc).

Multiplying equations of system (25), (26) by dt/dc and taking (27) into account, we find

d�a
dc

= �F(c, �d)Q(c, �a, �F(c, �d)), d �d
dc

=−�aQ(c, �a, �F(c, �d)), (28)

where �F(c, �d)= (αI +S(c))−1(βD �d+ �f (c)) and �̇a= �F(c, �d). The initial conditions for system
(27), (28) are

�a=0, �d=0, t=0 (c=0). (29)

The system (27), (28) is suitable for numerical evaluation of the hydroelastic behavior of
the impacting beam. Indeed, for small times we have c(t) = O(t1/2), w(x, t) = O(t3/2),
wt =O(t1/2), wtt =O(t−1/2). Therefore, one cannot start numerical calculations for system
(25), (26) with zero initial conditions. Kvålsvold and Faltinsen [3] described the difficulties
with initial conditions for a system of differential equations with respect to principal coordi-
nates an(t) and their derivatives ȧn(t), where the time t is taken as the independent variable.
On the other hand, t=O(c2),w=O(c3), �a=O(c3), d�a/dc=O(c2), �d=O(c), d �d/dc=O(1) as
c→0, and, therefore there are no problems with initial conditions for system (27–28).
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Details of the numerical analysis of the initial-value problem (27–29) are given in [12].
Estimation of the optimal step of integration �c and its dependence on the number of modes
taken into account were discussed.

In order to explain the present approach and outline its main features as compared with
the classical approaches to the numerical analysis of water impact, we consider a simple ini-
tial-value problem

vtt +v= t−1/2 (t >0), v(0)=vt (0)=0. (30)

The equation is similar to the beam Equation (3). It is worth noting that p(0,0, t)=O(t−1/2)

as t→0 in (3) [17]. The standard approach is based on the decomposition of (30) as

vt =u(t), ut =−v+ t−1/2, v(0)=0, u(0)=0.

The right-hand side of this ordinary differential system is singular as t → 0 (compare with
system (25)). This is the main difficulty for starting the numerical procedure. There are three
possible ways to overcome this difficulty: (1) resolve the singularity of the forced term, t−1/2,
from a physical point of view [6]; (2) obtain asymptotics of the solution as t→ 0 and start
the numerical simulation from that approximate solution at t = tε , where 0< tε � 1 [18]; (3)
use another decomposition (see below).

Equation (30) can be rewritten in the form

(vt −2t1/2)
′
t +v=0,

which leads to another way of decomposing the problem

vt=q(t)+2t1/2, qt=−v, v(0)=q(0)=0, (31)

which the present approach is based on (the function q(t) is equivalent to the function d(x, t)
introduced in (16), (17)). The initial problem (31) is already suitable for numerical analysis.
However, higher derivatives of the solution are singular at t=0. This may lead to loss of accu-
racy for small t . This is a reason for introducing new independent variable, τ = t1/2, with the
help of which problem (31) can be rewritten as

vτ =2τa(t)+4τ 2, aτ =−2τv(τ ), v(0)=a(0)=0. (32)

This change of the independent variable is equivalent to the replacement of time t for c in
system (28). The right-hand side of system (32) is analytic with respect to the independent
variable τ and the unknown functions v(τ) and a(τ). This implies that the solution is also
an analytical function of τ and can be readily computed.

4. Edge impact

It was shown by Kvålsvold and Faltinsen [4] that wave impact on the bow part of the wetdeck
of a catamaran is possible and that this phenomenon needs particular attention. In Section 2
it was also pointed out that the edge-impact problem corresponds to the second phase of an
elastic plate impact and its solution has to be incorporated into the computer code to treat
the impact under arbitrary conditions. Theoretical analysis of the edge-impact problem was
given by Korobkin [19] within a one-mode approximation and by Korobkin and Khabakh-
pasheva [16] using the normal-mode method.



Regular wave impact onto an elastic plate 137

In the case of edge impact (Figure 3) the liquid flow and the plate deflection are governed
by the boundary-value problem (3–10), where D= {x | 0<x < c2(t)} and x1 = 0 in (11). The
modified Wagner condition (14) has to be replaced by (see [19])∫ π/2

0
sin2 θ yb[c2(t) sin2 θ, t ] dθ =0, (33)

which, with account taken for (11), provides

t= 1−g(ηc2)

η2
+ 4
π

∫ π/2

0
sin2 θ w[c2 sin2 θ, t ] dθ,

where

g(z)=
∫ 1

0

√
σ cos(zσ )√

1−σ dσ.

We use the same decomposition of the beam equation as in Section 3. The plate deflec-
tion w(x, t) and the function d(x, t) are sought in forms (18) and (19), where now
ψn(x)= sin(λnx), λn=πn/2, n=1,2, ... and 0<x<2. Representations of the velocity potential
(23), (24) have to be replaced by (see [16])

ϕ(x,0, t)=
∞∑
n=1

bn(t)ψn(x) (0<x<2), bm(t)=−fm(c2)+
∞∑
n=1

ȧn(t)Snm(c2),

fm(c2)= πc2 sin(λmc2/2)
2λm

vm,

Snm(c2)= c2

2πλm

[
cos

λmc2

2
cos

λnc2

2
S(1)nm(c2)− sin

λmc2

2
sin

λnc2

2
S(2)nm(c2)

]
, (34)

S(1)nm=−π2umvn− π2λm

(λ2
n−λ2

m)
[λmumvn−λnunvm] , S(1)nn =−π2unvn−S(2)nn ,

S(2)nm= π2λm

(λ2
n−λ2

m)
[λmvmun−λnvnum] , S(2)nn =−π

2λnc2

4

[
u2
n+v2

n

]
,

um=J0

(
λmc2

2

)
, vm=J1

(
λmc2

2

)
.

By taking (33) and (34) into account, we arrive at systems (25–26) and (27–28), where the
function Q(c2, �a, �̇a) is obtained now by differentiation of (33) with respect to c2.

The initial-value problem (27–29) in the case of edge impact, where the elements of the
system are given by (34), is solved numerically by the Runge–Kutta method. This approach is
only valid when the velocity of the contact region expansion dc2/dt is positive and finite. If
the velocity vanishes and becomes negative, the liquid particles from the contact region escape
onto the liquid free surface, and a vortex layer, which is ignored in the present model, is formed.
If the velocity grows and becomes comparable to the sound velocity in the liquid, acoustic effects
must be taken into account. Therefore, in general, the parameter plane (α,β) is divided into three
parts (Figure 6): (1) dc2/dt becomes negative with time; (2) dc2/dt is unbounded; (3) dc2/dt
is positive and finite during the impact stage. It is seen that the Wagner approach should be mod-
ified for very flexible beams with small β. It is well-known that the total hydrodynamic force
grows beyond all bounds as dc2/dt→ +∞. This phenomenon is referred to as blockage. In this
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Figure 6. Plane of parameters α,β. The regions, where
dc2/dt <0(�) and where dc2/dt is unbounded (�), are
distinguished. The Wagner approach is only valid out-
side these two regions.

Figure 7. Blockage phenomenon.

Figure 8. Distance between the elastic plate and the
disturbed liquid free surface at different time instants
(c2<x<2).

case the rate of the added-mass increase is very high, which is mainly due to the elastic deflection
of the beam. This result is of practical importance because it indicates that flexibility of impacting
surfaces may lead to hydrodynamic loads that are greater than those for equivalent rigid surfaces.

Analysis of the blockage phenomenon shows that the liquid flow may be more compli-
cated than predicted by the Wagner theory. Namely, the right edge of the plate may enter
the disturbed liquid free surface before the velocity of the contact point becomes very high
(Figure 7). The distance between the right edge of the beam and the disturbed free surface
is shown in Figure 8 for α= 0·157, β= 0·0294 as a function of the contact-region dimension
c2. If the blockage phenomenon has been detected in numerical calculations, cavity formation
near the right edge of the beam is expected. The presence of the air in the cavity may essen-
tially change the process of the plate–liquid interaction. This problem is not considered here.
The blockage was not observed in the central-impact case, which means that the impact con-
ditions are responsible for this phenomenon.

Comparison between edge impact (curves 2) and central impact (curves 1) is presented in
Figure 9. Distributions of the beam deflection, velocity of the beam elements and the bend-
ing stresses along the beam are shown at the end of the impact stage. The impact conditions
in both cases are identical, except for the impact-point position. Curves 1 are symmetrical
with respect to the beam centre, x = 1. Calculations were performed for α= 0·314 and β =
0·311, which corresponds to the impact of an elastic plate onto a wave crest with a radius of
curvature of R=10 m. The plate of length 1m and thickness 2 cm is made of mild steel and hits
the waves at velocity 3 m/s. In dimensional variables, the duration of the impact stage is 0·36
for the central impact and 1·537 for edge impact. It is seen that the increase of the impact-stage
duration leads to a more than double increase of the deflection amplitude, a significant decrease
in the kinetic energy of the beam and an increase in the potential energy of the deformed beam.
Figure 9 demonstrates that the position of the impact point has a strong effect on beam behavior
at the end of the impact stage, with other impact conditions being identical.
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Figure 9. Distributions of the beam deflection (a),
beam velocity (b), and the bending stresses (c) along
the beam at the end of the impact stage for central
impact (curves 1) and edge impact (curves 2).

Figure 10. Trajectories of the contact points.

5. Impact with attached cavity

The interaction between an elastic plate and the liquid during the third part of the impact
stage, t2 < t < t3, is governed by the boundary-value problem (3–10), where
D={x |0<x<c2(t), c3(t)<x <2} (Figure 4). The initial conditions are given by (12) at t= t2.
The presence of air in the cavity, y = 0, c2(t) < x < c3(t), is neglected. We consider only the
case, where dc2/dt >0 and dc3/dt <0. Formulae (16–21) are still valid and the eigenfunctions
ψn(x) are the same as in the edge-impact problem (see Section 4).

In order to derive equations for the functions c2(t), c3(t), we consider the vertical displace-
ment of the liquid free surface [21]

Y (x,0, t)= 1
πW(x)

(∫ c2

0

yb(τ, t)W(τ)

τ −x dτ −
∫ 2

c3

yb(τ, t)W(τ)

τ −x dτ +F(t)
)
, (35)

where x �∈D(t). The characteristic function W(x) of the contact region is given as

W(x)=
√
x(x− c2)(c3 −x)(2−x),

and F(t) is an arbitrary function of time. The vertical displacement Y (x,0, t) is bounded at
the contact points x= c2 and x= c3 if and only if

∫ c2

0
yb(τ, t)

√
τ(2− τ)

(c2 − τ)(c3 − τ)dτ −
∫ 2

c3

yb(τ, t)

√
τ(2− τ)

(τ − c2)(τ − c3)
dτ =0,
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∫ c2

0
yb(τ, t)

√
τ(2− τ)(c3 − τ)

c2 − τ dτ +
∫ 2

c3

yb(τ, t)

√
τ(2− τ)(τ − c3)

τ − c2
dτ =F(t).

Differentiation of these equations with respect to time leads to the following system for the
derivatives ċ2 and ċ3

a11ċ2 +a12ċ3 =b1, a21ċ2 +a22ċ3 =b2 + Ḟ (t), (36)

the initial conditions for which are

c2(t2)= c2(t2 −0), c3(t2)=2. (37)

Here a11, a12, a21, a22, b1 and b2 are given functions of c2, c3 and t . The vertical velocity of
the liquid free surface is given by

ϕy(x,0, t)= 1
πW(x)

(∫ c2

0

ϕy(τ, t)W(τ)

τ −x dτ −
∫ 2

c3

ϕy(τ, t)W(τ)

τ −x dτ +C(t)
)
, (38)

where x �∈D(t) and ϕy(τ,0, t)= −1 +wt(τ, t). Far from the contact region, x→ +∞, y = 0,
Equations (35) and (38) provide

Y (x,0, t)∼ F(t)

πx2
, ϕy(x,0, t)∼ C(t)

πx2
,

which, with account taken for the equality Yt =ϕy , yield the equation

dF
dt

=C(t). (39)

The function C(t) is determined from the condition ϕ(c3,0, t) = 0, which is used in the
following form∫ 2

c3

ϕx(x,0, t)dx=0, (40)

where

∂ϕ

∂x
(x,0, t)=− 1

πW(x)

(∫ c2

0

W(τ)ϕy(τ,0, t)
τ −x dτ −P.v.

∫ 2

c3

W(τ)ϕy(τ,0, t)
τ −x dτ +C(t)

)
.

The integrals in Equations (36) and (40) are transformed into forms that are suitable for their
numerical evaluation by Simpson’s rule.

The principal coordinates an(t) are governed by the system of ordinary differential Equa-
tions (25–26), (36) and (39), where now (n≥1)

fm=S0m(c2, c3), ψ0(x)=1, ψn(x)= sinλnx,

Snm(c2, c3)= 1
λm

(∫ c2

0
cos(λmx)

∂ϕn

∂x
dx+

∫ 2

c3

cos(λmx)
∂ϕn

∂x
dx

)
, (41)

and

∂ϕn

∂x
= 1
πW(x)

(
P.v.

∫ c2

0

W(τ)ψn(τ)

τ −x dτ −
∫ 2

c3

W(τ)ψn(τ)

τ −x dτ +Cn
)
(0<x<c2),

∂ϕn

∂x
(x,0, t)=− 1

πW(x)

(∫ c2

0

W(τ)ψn(τ)

τ −x dτ −P.v.
∫ 2

c3

W(τ)ψn(τ)

τ −x dτ +Cn
)
(c3<x<2),
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where the constants Cn are numerically determined by using condition (40). The integrals in
(41) are evaluated numerically by Simpson’s rule.

Numerical calculations were performed with 5 and 10 elastic modes for two cases. In the
first case the wave profile was approximated by a parabolic contour (η→ 0), and in the sec-
ond case was given by Equation (1). It was revealed that, even in the first case, the air can
be trapped close to the right edge of the impacting plate (α=0·157 and β=0·03). After the
cavity has been formed, the contact points are accelerated. The cavity is very thin and exists
for a short period. The hydrodynamic pressures during the collapse of the cavity are very high
but of short duration. In fact, “secondary” hydrodynamic impact onto the plate occurs with
loads being much higher than at the beginning of the plate–liquid interaction. It should be
noted that the deflections change just a little during the third phase. However, the high pres-
sures affect the bending stresses, which grow significantly.

It was found that the value t2, which has to be determined together with the liquid flow
and the beam deflection, must be evaluated very precisely to make the numerical scheme sta-
ble. It was proved that system (36) provides (dc3/dt)(t2)=0. This equality is used to start the
simulation of the plate/liquid interaction during the third phase.

In the second series of calculations the initial shape of the liquid free surface is given by
(11) in non-dimensional variables with η=3π/4, which implies that the wave length is 4/3 of
the total plate length, and α=0·248, β=0·0573. This corresponds to the experimental condi-
tions [1]: the steel plate of thickness 8 mm and length 0·5 m falls from a height of 1 m against
regular waves with the radius of curvature at the wave crest equal to 10 m. It was taken that
x1 =0. During the impact stage a cavity is formed due to the geometry of the initial shape of
the liquid surface. The cavity size and the duration of the third stage are much greater than in
the first case. The trajectories of the contact points are shown in Figure 10. Bending stresses
and deflections vary smoothly during the third phase in the present case.

6. Penetration stage

During the penetration stage the beam is totally wetted but continues to interact with the liq-
uid. The process is described by the boundary-value problem (3–10), where D= (0,2) and the
initial conditions (5) have to be changed as follows

w(x, t3)=w(x, t3−0), wt (x, t3)=wt(x, t3−0), (42)

where w(x, t3 −0) and wt(x, t3 −0) are the beam deflection and the beam velocity, respectively,
at the end of the impact stage. This problem is equivalent to that of a floating elastic plate,
which starts to enter the liquid at t= t3 with a constant velocity and both the initial deflection
of the plate and the initial velocity of its elements being prescribed. A theoretical analysis of
this stage was given by Faltinsen [7]; see also [14]. In the last paper the problem is formulated
with respect to the hydrodynamic pressure p(x, y, t) and the beam deflection w(x, t). The
scales of time and of the unknown functions are chosen in accordance with recommendations
by Faltinsen [7]. The beam deflection is sought as a superposition of eigenfunctions of the
spectral problem for a totally wetted elastic plate. Details of the analysis of “wet” modes and
formulae for the elements of the matrix of hydrodynamic coefficients Snm (see (25)) can be
found in [14]. It was found that the first “dry” and “wet” modes are practically identical, for
the second modes the difference is less than 8%, for the third modes less than 7% and for
the fourth modes less than 6%. Therefore, it is reasonable to use “dry” modes, the shapes of
which are given analytically, to describe the beam deflection during the penetration stage. The
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Figure 11. Deflection of the beam centre. Solid line:
calculations; broken line: experiments.

Figure 12. The strains (in µs) at the beam centre as
a function of the time (in seconds) during the pen-
etration stage. Direct computations (curve 1), average
stresses (curve 2), experiments (curve 3).

eigenfunctions and the corresponding eigenvalues for totally wetted elastic plate are dependent
on the parameter α but not on β.

Calculations were performed for α=0·252 and spring conditions at the beam edges [2]

w′′ =0,
∂2w

∂x2
±k ∂w

∂x
=0 (x=0 and x=2), (43)

where plus is for x=2 and minus for x=0, k is the nondimensional rigidity of the spring. A
value of k=2·85 was taken in the present calculations.

It should be noted that the numerical analysis of the plate/liquid interaction during the
penetration stage does not require a special treatment of the original boundary-value prob-
lem and can be performed with the help of the numerical scheme described in Section 4 for
the edge-impact case. We need only to omit Equation (33) because c2 ≡ 2 at the penetration
stage and to replace c2 in (34) by 2. Both the matrix S and the vector �f do not depend on
time now and system (25), (26) can be readily integrated numerically.

Within the experimental conditions (α= 0·2512, β = 0·0551, k= 2·85) the calculations were
performed with 15 dry modes for problem (3), (6–10), (42) and (43) in the case of central
impact. A comparison between experimental and numerical results is shown in Figure 11 for
the plate deflection and in Figure 12 for the amplitude of bending stresses at the beam center
point, x=1. The convergence of the series for the strain has been investigated. If more than 15
modes are used, additional small-amplitude vibrations appear. The amplitude is so small that
the vibrations are difficult to recognize on the graph. It should be noticed that the distribution
of strain along the beam is rather smooth at any time instant (see Figure 9c, for example).

The predicted deflection at the plate midpoint corresponds fairly well to the measured
deflection at this point (see also the comparison in [2]). Predicted stresses clearly overes-
timate contributions of higher modes, which are suppressed in the experimental results. A
similar overestimation can be found in the theoretical results of Faltinsen et al. [2], which
were obtained by using the same model but with simplified initial conditions

w(x, t3)=0, wt (x, t3)=1.

An explanation of the higher-mode generation during the plate impact is given in Section 7.
However, there is a simple possible explanation based on an analysis of the parameters of the stress
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gauges used in the experiments. Resonance frequencies of the stress gauges are not reported in [2].
We use the data reported in [22]. In [22] the hydroelastic behavior of a circular elastic cylinder was
studied with the help of the stress gauges having a resonance frequency of 5 kHz. If we assume that
the resonance frequency of the stress gauges in the Norwegian experiments is equal to 3 kHz, we
may average the numerical results over the time interval 2·25×10−3 s. Averaged numerical stresses
(curve 2) fit the experimental ones fairly well (see Figure 12).

7. Generation of higher modes

There are several reasons for higher modes to be generated during the impact stage. These
are: (1) initially very high hydrodynamic pressures are localized close to the impact point;
(2) pressure distribution along the wetted part of the plate is highly non-uniform and is
unbounded at the moving contact points; (3) the area, along which the hydrodynamic loads
act, grows with time. Calculations were performed to demonstrate that the third reason, which
is the main feature of the impact stage, is responsible for the generation of higher modes.

We consider the edge-impact problem (α= 0·247, β = 0·05733, η=π/6) for a simply sup-
ported beam. The non-dimensional stress amplitude is given by

σ(x, t)=
∞∑
n=1

σn(t)ψn(x),

where ψn(x)= sin(λnx) , λn = πn/2, σn(t)= −an(t)λ2
n/2 and an(t) are the principal coordi-

nates of the beam deflection. The functions σn(c2), n= 1,2,3,4, 0< c2 < 2, where c2 is the
contact-region dimension, are shown in Figure 13 together with the shapes of the correspond-
ing modes. It is seen that σ1(c2) is a monotonic function, and that σ2(c2) peaks at the instant
when the contact point passes the node of the second mode. Correspondingly, the amplitude of
the contribution of the third mode to the bending stresses, σ3(c2), peaks at the instant when the

Figure 13. Contributions of normal modes to the bending stresses.
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contact point passes the first node of the third mode, and so on. After their first peaks the func-
tions σn(c2) do not grow essentially. The magnitudes of the peaks decrease monotonically as the
number n increases. We may conclude that the highest modes are generated just after the impact
instant and are influenced by fine details of the flow at the very beginning of the impact, but
their amplitudes are rather small. The modes with moderate numbers are generated much later
and their amplitudes are affected by the velocity of the expansion of the contact region. The
first mode does not reach its maximum at the impact stage. This preliminary analysis makes it
possible to believe that a correct description of high-mode contributions to the bending stresses
is connected neither with fine details of the very initial stage of the impact, when the speed of
the contact point is very high and acoustic effects have to be taken into account, nor with fine
details of the pressure distribution close to the contact points, where nonlinear effects are of
importance, but with the effect of moving the load.

We may assume that the amplitudes of the higher modes decay during the penetration
stage due to sound radiation. Indeed, the period of the second “dry” mode for the plate used
in the experiments [1] (but simply supported) is 0·00125 s; the scale of acoustic effects is of
the order 0·0003 s (this time scale is equal to the initial length of the beam 0·5 m divided by
the sound velocity 1500 m/s) and the bending stresses reach their maximum values at 0·005s
approximately. Taking into account that the acoustic radiation of energy is more intensive for
higher frequencies than for lower ones, we may conclude that acoustic effects may be respon-
sible for suppressing the higher modes well before the stresses reach their maximum.

8. Global characteristics of the impact stage

Previous sections of this paper show that the interaction between an elastic plate and a liq-
uid can be very complicated during the impact stage. On the other hand, assuming that the
maximum bending stresses occur at the penetration stage, we need only to determine the plate
deflection and its velocity at the end of the impact stage in order to evaluate the maximum
amplitude of the bending stresses in the plate within Wagner’s theory. This means that we
need to obtain initial conditions to start numerical calculations for the penetration stage, dur-
ing which the bending stresses approach their maximum values. According to the algorithm
described in Sections 3–5 several possibilities of the process development have to be consid-
ered, which are essentially dependent on the initial shape of the liquid free surface. However,
both the position of the free surface at the impact instant and this instant itself are not usu-
ally well-defined in practice. This means that one may expect only to obtain estimations of
the bending-stress maximum, which is of primary practical interest, for a certain range of
impact conditions but not the stress values themselves. If so, we shall study quantities, which
are weakly dependent on the impact conditions, and use them to estimate maximum bending
stresses. An experimental analysis of the dependence of the maximum stresses on the impact
conditions (place of the impact, radius of the curvature at the wave crest) was given by Falt-
insen et al. [2]. But the maximum of bending stresses is a local characteristic, which is why in
theory it is not easy to estimate this quantity directly. We use another approach based on esti-
mates of global characteristics (kinetic energy of the liquid flow, kinetic energy of the beam
deflection and potential energy of the deformed plate), which are much easier to obtain. It
is shown in this section that the global characteristics strongly depend on the impact condi-
tions (this is clear from Figure 9) but the total energy of the plate–liquid system is highly con-
servative and is mainly dependent on the impact velocity and the plate parameters. In order
to determine the global characteristics under consideration, we use the energy-conservation
law for nonlinear liquid flow and linear elasticity of the beam. This point is very important,
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because the correct result can not be derived within the linear theory of liquid flow, which is
used for numerical simulations of the impact. The reason is that the energy-conservation law
has to include the kinetic energy of spray jets, which is of the same order of magnitude as
the kinetic energy of the main flow [23], but the spray jets are neglected within the Wagner
approach used in this paper.

The kinetic energy of the nonlinear liquid flow (a prime stands for dimensional variables)

T
′
L(t

′)= 1
2
ρ

∫
�(t ′)

∫
(∇′ϕ′)2 dx′dy′, (44)

where ρ is the liquid density, �(t ′) is the flow region and ϕ′(x′, y′, t ′) is the velocity potential
of the nonlinear flow, is equal to the external work done to generate the flow

T
′
L(t

′)=−
∫ t ′

0


 ∫
D(τ ′)

p′ ∂ϕ′

∂y′ dy′


 dτ ′, (45)

which follows from the energy conservation law for the liquid motion. Here D(τ ′) is the con-
tact region between the entering elastic plate and the liquid at the instant τ ′. It should be
noted that, owing to its flexibility, the change of the plate shape is not taken into account in
Equation (45). This approximation comes from the assumption that the amplitude of elastic
plate deflections is small compared to both the plate length and the dimension of the contact
region and gives a negligibly small contribution to the liquid flow. The interaction between
the liquid and the entering elastic plate is mainly due to a decrease of the impact velocity

∂ϕ′

∂y′ =−V + ∂w′

∂t ′
(x′, t ′) (46)

but not due to variation of the plate shape.
Multiplying the beam Equation (3) rewritten in dimensional variables by ∂w′/∂t ′ and integrat-

ing the result along the plate and in time with the edge conditions (4) accounted, for we obtain

T
′
B(t

′)+P ′
B(t

′)=
∫ t ′

0


 ∫
D(τ ′)

p′ ∂w′

∂t ′
dx′


 dτ ′, (47)

where T
′
B(t

′) is the beam kinetic energy,

T
′
B(t

′)= 1
2
MB

∫ 2L

0

(
∂w′

∂t ′

)2

(x′, t ′)dx′, (48)

and P
′
B(t

′) is the potential energy of the deformed plate,

P
′
B(t

′)= 1
2
EJ

∫ 2L

0

(
∂2w′

∂x′2

)2

(x′, t ′)dx′. (49)

The left-hand side of the energy-conservation law for the elastic plate (47) will be more com-
plicated for beam equations different from that of Euler and/or different edge conditions.

Combining Equations (45) and (47) and taking (46) into account, we find

T
′
B(t

′)+P ′
B(t

′)+T ′
L(t

′)=V
∫ t ′

0
F

′
(τ ′)dτ ′,

where F
′
(t ′) is the total hydrodynamic force on the plate. In dimensionless variables the latter

equation takes the form
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TB(t)+PB(t)+TL(t)=2
∫ t

0
F(τ)dτ (50)

with the quantities 1
2ρV

2L2 and ρV 2R being the energy scale and the force scale, respectively.
The kinetic energy of the liquid flow can be approximately decomposed as TL=TLM +Tjet,

where TLM(t) is the energy of the main flow and Tjet(t) is the kinetic energy of the spray
jets. The energy TLM(t) can be determined within the Wagner theory with �(t) being approx-
imated by the lower half-plane y≤0. The velocity potential ϕ(x, y, t) is decomposed as

ϕ(x, y, t)=ϕR(x, y, t)+ϕE(x, y, t),
where ϕR(x, y, t) satisfies Equations (7–10) with w≡0 and ϕE(x, y, t) satisfies the same equa-
tions but with condition (9) being replaced by ∂ϕE/∂y=wt(x, t). The potential ϕR(x, y, t) can
be referred to as the velocity potential of the flow caused by rigid motion of the plate and
ϕE(x, y, t) as the velocity potential of the flow generated by the elastic deflection of the plate.
It should be noted that both potentials depend on the geometry of the real contact region
D(t). We find

TLM(t)≈
∫
y<0

∫
(∇ϕ)2 dxdy=

∫
D(t)

ϕR
∂ϕR

∂y
dx+2

∫
D(t)

ϕE
∂ϕR

∂y
dx+

∫
D(t)

ϕE
∂ϕE

∂y
dx. (51)

On the other hand,

2
∫ t

0
F(τ)dτ =2

∫ 2

0

∫ t

0
(−ϕt (x,0, τ ))dτdx=−2

∫ 2

0
ϕR(x,0, t)dx−2

∫ 2

0
ϕE(x,0, t)dx. (52)

Substituting (51) and (52) in (50) and taking into account the equalities (∂ϕR/∂y)(x,0, t)=−1,
where x ∈D(t), and ϕR(x,0, t)=ϕE(x,0, t)=0, where x �∈D(t), we obtain

TB(t)+PB(t)+TLE(t)≈TLR(t)−Tjet(t). (53)

Here

TLE(t)=
∫
D(t)

ϕE
∂ϕE

∂y
dx, TLR(t)=

∫
D(t)

ϕR
∂ϕR

∂y
dx.

The kinetic energy of the spray jets, Tjet(t), grows with time during the impact stage and is
constant at the penetration stage because the jets are separated from the main flow region at
t = t3. The total energy of the jets at the penetration stage, Tjet(t3), is denoted by T ∗

jet. The
kinetic energy TLR(t) grows during the impact stage and is equal to π/2 at the end of the
impact stage and keeps this value thereafter.

It is worth noting that for an equivalent rigid plate the left-hand side in (53) is zero and
we obtain the well-known result TLR(t)≈Tjet(t), which implies that the kinetic energy of spray
jets is equal to the kinetic energy of the main flow during the impact stage [23].

The sum on the left-hand side of Equation (53) is referred to as the total elastic energy of
the plate–liquid system and is denoted by U(t). It is clear that the elastic energy is approxi-
mately constant

U(t)≈ π

2
−T ∗

jet

during the penetration stage, t > t3. We denote U(t3) by U∗ and notice that

U∗ ≤π/2. (54)
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Figure 14. Components of the ‘elastic’ energy U∗ as
functions of time during the penetration stage.

Figure 16. Relative contributions to the ‘elastic’ energy
U∗ of the total potential energy, PB/U∗; the poten-
tial energy due to the first mode, P1/U∗; the potential
energy due to the modes from second to tenth, P̃ /U∗.

Figure 15. Evolution of the non-dimensional stresses
in the plate during the penetration stage: thick line
is for maximum stresses, thin line is for the bending
stress at the plate centre.

Figure 17. Non-dimensional stresses at the plate centre
during the penetration stage: the solid line is for calcu-
lated bending stresses, the broken line is the theoretical
estimation of the bending stresses, the dotted line is for
bending stresses given by the one-mode approximation.

The dependence of U∗ on impact conditions was studied numerically for η=3π/4 and the
steel plate used in the Norwegian experiments. It was revealed that U∗ weakly depends on the
impact location, U∗ ≈1·27 for 0≤x1 ≤1, which is less than π/2, and on the initial geometry of
the liquid free surface: 1·21<U∗<1·28 for 7·5m<R<75 m. This means that the total elastic
energy U∗ is dependent mainly on impact velocity the plate flexibility and only weakly on the
initial shape of the liquid free surface. Inequality (54) can be improved by taking the energy
of spray jets into account. This problem is not considered here.

9. Estimation of maximum bending stresses

In order to illustrate how to estimate the maximum amplitude of the bending stresses in the
plate, the central-impact case is considered. The corresponding analysis for the edge impact
is described in [24].

The parts TB(t),PB(t) and TLE(t) of the total elastic energy U∗ during the penetration
stage are depicted in Figure 14 as functions of time t . It is seen that the main contribution to
the total energy U∗ at the beginning of the penetration stage comes from the kinetic energy
of the liquid flow TLE and there is a time instant tm, when the total energy is concentrated
in the potential energy of the deformed plate

PB(tm)≈U∗. (55)
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The maximum stress in the plate (thick line) and the stress at the plate midpoint (thin line)
are shown in Figure 15. We may conclude that the stresses at the plate centre can be used to
approximate the absolute maximum value of the bending stresses. It is important to notice
that the bending stresses approach their maximum value at t≈ tm approximately.

Within the normal-mode approach the potential energy PB(t), t > t3, is the sum of
the mode contributions. Relative contributions of modal potential energies are depicted in
Figure 16, where P1(t) is the potential energy of the first dry mode

P1(t)=βλ4
1a

2
1(t) (56)

and

P̃ (t)=β
10∑
n=2

λ4
na

2
n(t)

is the contribution to the total potential energy including the second to tenth mode. It is seen
that the first mode gives the main contribution to the potential energy of the deformed plate.
Therefore, we obtain from (55) and (56) that

a2
1(tm)≈

U∗
βλ4

1

. (57)

Within the one-mode approximation, which may be used to describe the hydroelastic
behavior of the plate during the penetration stage, system (25–26) gives (see [25])

(α+S11)ä1 +βλ4
1a1 =0 (t > t3), (58)

where λ1 =π/2, S11 = (π/2)[J 2
0 (π/2)+J 2

1 (π/2)]. The term f1 in (25) is zero after the plate is
totally wetted. The general solution of Equation (58) has the form

a1(t)=C1 sin(ωt+ δ), (59)

where ω=λ2
1
√
β/(α+S11), and both C1 and δ have to be determined from initial conditions.

We assume that the one-mode approximation correctly describes the evolution of the beam
potential energy with time. If so, Equations (57) and (58) yield

C1 =
√
U∗/βλ−2

1 , tm= (π/2− δ)/ω. (60)

The quantity δ can be found by matching either the potential or the kinetic energy at the
beginning of the penetration stage. For example, if P(t3) is specified, we obtain the following
equation

βλ4
1C

2
1 sin2 δ=P(t3). (61)

Dimensional bending stresses are given as

σ ′(x′, t ′)=−(Eza/R)wxx(Lx, (L2/RV )t), (62)

where za is the distance from the neutral axis in the beam cross-sectional area to the point
where the stress is evaluated [2]. For a beam of constant thickness h, we have za = h/2 on
the beam surface. Within the one-mode approximation the absolute maximum of the bending
stresses σ

′
max and the time t

′
m can be found by using (60–62) as

σ
′
max ≈

√
U∗V za

√
ρLE

J
, t

′
m≈ 2L2

π

(
1− 2δ

π

)√
MB +S11ρL

EJ
, δ=arcsin

√
P(t3)/U∗. (63)
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In the experimental conditions for the steel plate, formulae (63) provide σ
′
max ≈ 1867µs and

t
′
m ≈ 0·0075s with δ= 0, which reasonably correspond to the measured values σ

′
max = 1600µs

and t
′
m = 0·005s. It should be noted that the connection between the elastic plate and the

structure was more complicated in the experiment that in the simplified theoretical analysis
here. By taking into account more realistic edge conditions, we may hope to reduce the differ-
ences between the estimated and the measured values.

The non-dimensional ‘elastic’ energy U∗ in (63) has to be evaluated from the numerical
solution of the original problem at the impact stage with all peculiarities of this stage taken
into account. This fact reduces the practical importance of the approximate formula (63) for
the value σ

′
max. On the other hand, we can use inequality (54) to estimate the stresses. The

corresponding bound is depicted in Figure 17 by the broken line.
Let us denote the total length of the beam by LB , then (54) and (63) lead to

|σmax |(
za
LB

)
V

√
J

ρEL3
B

≤
√
π

4
,

where
√
π/4 ≈ 0·88. Experimental results for the same ratio and different impact velocities,

plates and impact conditions [2] give the corresponding upper bound as 0·7. The obtained
theoretical estimation overpredicts the experimental estimate but is simple and can be recom-
mended for structural analysis of plates subject to wave-impact loads.

10. Conclusion

It has been demonstrated in the present paper that the normal-mode method is a powerful
tool to treat the unsteady problem of elastic plate impact onto a liquid free surface which is
slightly curved. The method was modified to avoid calculations of the hydrodynamic loads. The
study focused on deflections of the plate and distribution of bending stresses. The original prob-
lem is reduced to a system of ordinary differential equations for the principal coordinates of
the normal modes. The positions of the contact points are governed by nonlinear differential
equations, which are incorporated into the system for the principal coordinates. It is important
to notice that the numerical solution can be started from the initial instant of time, when the
dimension of the wetted area of the plate is zero. The numerical algorithm does not require
supercomputers and renders it possible to investigate details of the plate/liquid interaction.

The impact stage, during which the plate is wetted only partially, is divided into three
phases. The peculiarities of the interaction are investigated for each phase. Impact conditions,
for which Wagner’s theory can be used, are distinguished. The phenomenon of the hydrody-
namic load increase due to plate flexibility was revealed (blockage phenomenon). It is shown
that a cavity attached to the plate may be formed just before the hydrodynamic loads become
unbounded. The impact of an elastic plate with an attached cavity is analyzed.

Maximum bending stresses are obtained numerically and compared with the measured
data. Calculated stresses overestimate the contributions of the higher modes. An explanation
of the higher-mode generation is given. Higher modes are generated during the impact stage
and are due to the effect of wetted-area expansion.

It is shown that the components of the energy of the plate/liquid system are strongly
dependent on the impact conditions but the total energy is a rather stable quantity. The
greater the kinetic energy of the spray jets is, the smaller the potential energy of the deformed
plate will be. The obtained estimate of the potential energy leads to an estimate of the abso-
lute maximum of the bending stresses, which corresponds reasonably well to the experimental
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results. The obtained theoretical estimate can be used in the structural analysis of plates sub-
ject to wave impact.

Preliminary results of this work were reported at the International Workshops on Water
Waves and Floating Bodies in 1997, 1998, 1999 and at the 7-th International Conference on
Numerical Ship Hydrodynamics, 1999.
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2. O.M. Faltinsen, J. Kvålsvold and J.V., Aarsnes, Wave impact on a horizontal elastic plate. J. Marine Sci.
Technol. (1997) 87–100.
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